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Abstract We study automata for capturing the transformations in practical natural
language processing (NLP) systems, especially those that translate between human
languages. For several variations of finite-state string and tree transducers, we survey
answers to formal questions about their expressiveness, modularity, teachability, and
generalization. We conclude that no formal device yet captures everything that is
desirable, and we point to future research.

Keywords Translation · Automata

1 Introduction

Many problems in natural language processing (NLP) consist of transforming one
string (or structure) into another. These include translation, summarization, ques-
tion answering, speech recognition, speech synthesis, semantic interpretation, and
language generation. Mapping inputs to their proper outputs amounts to capturing
a mathematical relation, i.e., capturing a possibly infinite set of input/output pairs.
Given such a relation, we can ask the question: for input x, what is the set Y of all
possible outputs? Due to incomplete knowledge about these complex domains, we
usually need to reason under uncertainty, so we often add numerical weights to the
relation. We then ask: for input x, what is the highest-scoring output y?

In a case like machine translation, the relation is infinite. We cannot capture it by
creating a finite list of sentence pairs 〈x, y〉 that are acceptable translations. Automata
theory provides numerous frameworks and formalisms for concisely capturing such
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infinite relations. NLP practitioners are frequently interested in making use of standard
automata, in order to exploit their formal properties and associated efficient algorithms.
Of course, they only want to do this to the extent that the formalism is a good fit for the
problem they are working on. In this paper we look at desirable properties of automata
from an NLP perspective, and investigate whether the properties hold or not across a
range of formalisms. In particular, we look at:

– Expressiveness: Can we can express the required linguistic knowledge in the
formalism?

– Modularity: Can we break a complex problem down into pieces, model those
pieces, and assemble them into a solution?

– Inclusiveness: In moving from simpler to more expressive formalisms, do we lose
the ability to express the simpler things?

– Teachability: Can linguistic knowledge be obtained efficiently from sample
input/output pairs?

For each of these broad topics, we select a single specific, provable formal property
to investigate. Because we want to bridge between automata theory and NLP practice,
we have written this paper in a style accessible to both. We conclude with some open
issues to consider.

2 String transducers

A finite-state string transducer (FST) proceeds through its input string from left to
right in discrete steps. At each step, some number of input-string symbols (possibly
zero) are consumed, and some number of output-string symbols (possibly zero) are
emitted. In addition, each step takes the machine from one state to another. A string
pair 〈x, y〉 is considered an element of the FST’s modeled relation if the machine
(1) begins in some designated start state, (2) after a series of steps consumes all of
input string x, (3) emits string y as a result of those same steps, and (4) ends in some
designated final state. Because FSTs are non-deterministic, a given input string may
map to many outputs.

An FST can be defined as a 6-tuple 〈Q, �,�, q0, f0, P〉, where Q is a finite set of
states, � is an alphabet of input symbols, � is an alphabet of output symbols, q0 is a
distinguished initial state, f0 is a distinguished final state, and P is a set of transitions
which are themselves 4-tuples. A transition like 〈q, r, A, BC〉 allows the FST, when in
state q, to consume symbol A, emit symbols B and C, and move to state r.

There are several variations for the transition map. Drawing transitions from Q x
Q x �∗ x �∗ means that a single transition step can consume zero or more symbols
and emit zero or more symbols. This choice provides flexibility, and in addition, it
admits a useful normal form Q x Q x (� ∪ ε) x (� ∪ ε). The generalized sequential
machine (GSM) variation is restricted to Q x Q x � x �∗, requiring that each transition
consume exactly one input symbol. A GSM cannot generate unbounded output—that
is, given an input string of length n, any output string will have a maximum length kn,
for some k dependent on the GSM’s transition map.
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Weighted FSTs add a numerical weight to each transition. From these transition
weights, we can compute an overall weight for any string pair 〈x, y〉, allowing us to
prefer one output over another.

FSTs have nice computational properties, one of which is closure under compo-
sition (Schutzenberger 1961; Mohri et al. 2000). This means that a pipeline of FSTs
can always be rebuilt as a single FST, allowing a system designer to break a complex
problem down into simple pieces, and to assemble those pieces automatically. Com-
position can happen off-line (e.g., D = A◦B◦C), and the resulting composed machine
can be applied to the input I (e.g., best-path (I◦D)).1 Alternatively, we can wait until
we have the input, then perform a synchronized search using all of the FSTs in the
pipeline simultaneously (e.g., best-path-synch(I◦A◦B◦C)). In this case, a node in
the synchronized search space is taken to be an n-tuple of states drawn from the input
and pipelined FSTs (e.g., 〈i4, a1, b17, c3〉). This lazy composition (Mohri et al. 2000)
is practical in memory usage, and search beams can be applied to make for an efficient
approximation to the best-path computation. The search is integrated, in that input x is
processed simultaneously by all of the FSTs in the pipeline, rather than being passed
from one to the next sequentially. Closure under composition allows all of these types
of inference.

FSTs are also efficiently trainable. Exposed to a corpus of input and output string
pairs of maximum length n, the forward–backward algorithm (Baum and Eagon 1967)
can determine weights for the transitions that locally optimize the corpus probability
in time O(n2).

Portable implementations of weighted FST composition, best path, and training
can be found in software toolkits such as Graehl (1997) and Mohri et al. (2000). Mohri
et al. (2000) provide an excellent overview of weighted FSTs for speech and NLP, and
(Knight and Al-Onaizan 1998; Kumar and Byrne 2003) describe statistical machine
translation systems based on weighted FSTs.

3 Tree transducers

String-based FSTs are a good fit for NLP problems that are characterized by stateful
left-to-right substitution, e.g., acoustic modeling for speech recognition (Mohri et al.
2000) or transliteration of names across language pairs with different orthographies
and sound systems (Knight and Graehl 1998). However, their expressiveness breaks
down for more complex problems, such as machine translation, where there is a great
deal of reordering, and where many operations are sensitive to syntactic and semantic
structure.

Figure 1 shows an example of Arabic-to-English translation, in which the translation
of the Arabic verb (at the beginning) must be moved to the middle of the English output
sentence. Figure 2 shows the reverse.

1 The “◦” operator indicates composition. A◦B is the FST that captures the set of all string pairs 〈x, y〉
where there exists a z such that 〈x, z〉 is captured by A and 〈z, y〉 is captured by B. The “best-path” operator
finds the best-cost 〈x, y〉 in the FST it is applied to, then prints y. I is the input string x converted to an
identity FST which captures the relation 〈x, x〉.
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Fig. 1 Arabic-to-English translation example. We want to capture all input/output pairs of this form, where
subtrees t1, t2, and t3 are identical in the input and output

Fig. 2 English-to-Arabic translation example. This is the inverse of the relation in Fig. 1

The utility of hierarchical tree structure was noticed early by Chomsky, and as a
result, automata theorists devised tree acceptors and transducers (Doner 1970; Rounds
1970; Thatcher 1970), whose mathematical aim was to generalize the previously-
developed string automata. Recently, NLP practitioners have been constructing
weighted syntax models for machine translation and other problems, so it has become
important to understand the match between practical problems and automata
formalisms.

A top-down tree transducer can be defined as a tuple 〈Q, �,�, q0, P〉, where Q
is a finite set of states, � is an alphabet of input symbols, � is an alphabet of output
symbols, q0 is a distinguished initial state, and P is a set of productions (or rules).
Here is a sample transducer rule:

This rule is useful for capturing the relation in Fig. 1. In state q, it consumes an
input tree node S, outputs a tree fragment with new S and VP nodes, and recursively
processes the three children of the input S node. Note that this rule reorders the input
children as it creates the output.2 In computer-readable format, the same rule looks
like:

2 For a fuller overview of tree transducers for NLP, see Knight and Graehl (2005).
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q S(x0, x1, x2) → S(r x1, VP(s x0, q x2))

Tree transducer rules in the literature (Gécseg and Steinby 1984) have a one-
level left-hand side (LHS) with a state, an input-tree symbol, and (optionally) a se-
quence of variables x0, x1, . . . ,xn. The right-hand side (RHS) shows what the rule
emits. The RHS may be multi-leveled, containing both output-tree symbols and la-
bels x0, x1, . . . ,xn, the latter of which are labeled with states for recursive top-down
processing.

There are different classes of tree transducers based on the types of rules that
are allowed. A rule is said to be deleting if its LHS contains a variable that does
not appear on the RHS. The RHS in a copying rule will contain at least two in-
stances of some LHS variable. A transducer is non-copying (linear) and non-deleting
if all of its rules are likewise. The class of non-copying, non-deleting transduc-
ers is called LNT (L for linear, N for non-deleting, T for top-down). If we allow
deleting, we wind up with the class LT, and if we allow both deleting and copy-
ing, we wind up with the class T of top-down transducers. T can express more re-
lations than LT, which can express more relations than LNT (Gécseg and Steinby
1984).

LNT is described in the literature as a generalization of string transduction, in
the following sense. If we write strings vertically as non-branching trees, then we
can view string transduction as tree transduction, albeit on skinny trees. We can au-
tomatically convert any normal-form FST into an LNT transducer. For each tran-
sition in the FST, we construct a corresponding LNT rule. There are four cases of
interest:

〈q, r, A, B〉 q A(x0) → B(r x0)
〈q, r, A,ε〉 q A(x0) → r x0 “output-ε”
〈q, r,ε, B〉 q x0 → B(r x0) “input-ε”
〈q, r,ε, ε〉 q x0 → r x0

In each case, we substitute the LNT rule on the right for the FST transition on the
left. We must also apply a technical fix to account for the FST’s final state by adding
an END token to the bottom of the skinny trees that represent strings.

In this article, we refer to the second kind of rule above as an output-ε rule, and the
third kind as an input-ε rule, in analogy to FSTs, even though there are no literal ε

symbols in the LNT rules. Note that none of the four rules above are deleting rules—to
be deleting, the rules would have to omit x0 from the RHS.

4 Properties

Now we revisit the four desirable properties from Sect. 1, assigning to each a particular
formal property to investigate. Each topic is potentially quite broad, so we pick specific
issues that arise frequently in practice:

– Expressiveness. Can the transducer class express the machine translation transfor-
mations in Figs. 1 and 2?

123



126 K. Knight

– Modularity. Is the transducer class closed under composition?
– Inclusiveness. Does the transducer class generalize FST?
– Teachability. Does the transducer class admit an efficient algorithm for optimizing

rule weights based on a set of input/output training pairs?

Once these questions are considered in detail, we conclude with a diagram showing
which automata classes possess which properties.

4.1 Basic and extended transducers

LNT is closed under composition (Gécseg and Steinby 1984), but it is not expressive
(in the sense above), because it cannot encode the transformation in Fig. 2. An LNT
rule matching Fig. 2 must have the form q S(x0, x1)→???. There is no way for the
RHS to insert x0 into the middle of x1.

By contrast, T is expressive, despite the fact that it also has a single-level LHS
(Shieber 2004; Knight and Graehl 2005). We accomplish this with a copying rule:

followed by two deleting rules:

However, T is not closed under composition (Rounds 1970).
The fact that LNT can express the transformation in Fig. 1 but not Fig. 2 is unsat-

isfying. As a result, Graehl and Knight (2004) define the class xLNT, which allows
rules with a multi-level LHS. xLNT is shown to be expressive by the simple rule:

Maletti et al. (2008) show that xLNT, xLT, and xT are strictly more powerful
than LNT, LT, and T, respectively. They also show that xLT and xT are not closed
under composition. Interestingly, even xLNT is not closed under composition. This is
illustrated by the following two relations, τ1 and τ2.
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gi refers to a non-branching tree with i number of g symbols. It is easy to model each
of τ1 and τ2 by xLNT transducers. (τ1 requires the use of output-ε rules). However,
no single xLNT transducer can capture the composition τ3:

This is because t1, t2, and t3 are separated by an unbounded number of g’s, and no
single rule can grab all three subtrees at once. This is interesting because xLNT does
preserve regularity (Maletti et al. 2008). That is, we can send an input tree (or forest)
through τ1 and send the resulting tree (or forest) through τ2, yielding another forest.
However, it is not possible to do composition, which means that we cannot employ
FST-like lazy algorithms for efficient inference.

Synchronous tree substitution grammar (STSG) (Eisner 2003) is slightly less power-
ful than xLNT, only because xLNT uses states that are separate from the input-symbol
vocabulary.

4.2 ε-Rules

Now we ask which of the above formalisms is inclusive, i.e., which generalize FST.
The answer is that none of them do. As defined in the literature, LNT allows output-ε
rules, but not input-ε rules like:
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While FSTs can generate unbounded amounts of output given finite input, LNT
does not allow this, so it is not a generalization of FST. Rather it is a generaliza-
tion of string-based GSMs, which consume exactly one input symbol per transition.
The same holds for the variation of xLNT as defined in Maletti et al. (2008). However,
xLNT as originally defined in Graehl and Knight (2004) allows both output-ε and
input-ε rules, and so generalizes FST.

How important are ε-rules in practice? We first consider examples from string trans-
duction. One of the most widely adopted machine translation models is IBM Model 3
(Brown et al. 1993), which casts translation as a word substitution/permutation process.
Knight and Al-Onaizan (1998) give a reconstruction of this model as a pipeline of FSTs,
and both types of ε-transitions appear. Output-ε transitions eliminate “zero-fertility”
input words that should not be translated, such as the word do in English/Spanish
translation. Likewise, input-ε transitions generate target function words that have no
corresponding source word, such as the Spanish object marker a. Interestingly, IBM
Model 3 bounds the latter by the number of English words, so these input-epsilons
could be eliminated in theory.

In many current phrase-based models of translation, by contrast, phrasal chunks are
substituted one-for-one, with no deletion or spurious generation—thus, the
2-word phrase sees Victoria might be substituted by the 3-word phrase ve a Victoria.
Kumar and Byrne (2003) present a practical phrase-based translation system built from
generic FST tools. Because there is no unbounded generation of output (or unbounded
consumption of input), this model can be encoded as an ε-free FST (though ε’s are
required for the normal form).

Similar variations exist in tree-based translation models. For example, the system
of Galley et al. (2004) acquires xLNT rules from bilingual text corpora. These include
rules of the form:

Such rules model the non-translation of words like B = please (in travel corpora) or
B = the (in English/Chinese translation).

Likewise, Graehl and Knight (2004) employ ε-rules to better parameterize an
English/Japanese translation model, e.g.:

q x0 → q1 x0

q x0 → INS(i x0, q1 x0)

q x0 → INS(q1 x0, i x0)
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q1 NP(x0, x1) → NP(q x0, q x1)

q1 NP(x0, x1) → NP(q x1, q x0)

i x0 → wa

i x0 → ga

. . .

Before consuming an input tree node, the model makes a 3-way q-state decision
about whether/where to generate target-language function words (such as wa or ga).
The q-state rules decide whether to insert a target function word to the left of the node
being processed, to the right of the node being processed, or not at all. The probabilities
of the three q-state rules sum to one. The i-state rules decide which function word to
insert. Both q-state and i-state rules are input-ε rules.

Hence, ε-transitions are used frequently in practice, though it is not obvious that
system designers really need generation of unbounded output, or consumption of
unbounded input. Unbounded output does appear in n-best lists, where a translation
like please X is accompanied by lower-scoring alternatives please please X, please
please please X, and so on.

4.3 Generalizing FST

To make LNT a generalization of FST, we need to add input-ε rules like q x0→
A(r x0). Unfortunately, this destroys closure under composition. A relevant example is:
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τ1 and τ2 can both be captured; τ2 uses input-ε rules to generate an unbounded
number of g’s. However, τ3 cannot be captured. This example is simpler than the
previous example for xLNT, as the ‘c’ symbols are atomic and do not stand for whole
subtrees. The practical significance is that general LNT composition is impossible, so
a general FST composition algorithm may still be needed for the string case.

The example above also covers xLNT. Therefore, while xLNT has expressiveness
that seems to be a good match for NLP problems, both input-ε and output-ε rules
independently cause non-closure under composition. Because practitioners may be
able to rework their models into ε-free versions, it is worth asking whether ε-free
xLNT is closed under composition. The answer is shown to be no in Arnold and
Dauchet (1982), with the following example:

h(t1, t2, h(t3, t4, h(. . . g(tn−1, tn)))) �τ1

g(t1, g(t2, g(. . . g(tn−1, tn)))) �τ2

g(t1, h(t2, t3, h(t4, t5, h(. . . h(tn−2, tn−1, tn)))))

Here, τ2 is any relation that maps its above-specified input to a set that includes its
above-specified output; it may non-deterministically produce other outputs as well.
While both relations can be modeled individually with ε-free xLNT, it is impossible
for one xLNT to make the entire leap.

We can summarize the effects on top-down tree transducers of all combinations of:
(1) extended LHS, (2) input-ε rules, and (3) output-ε rules:

x-LHS Input-ε Output-ε Expressive Composable Inclusive

No No No No Yes No
No No Yes No Yes No
No Yes No No No No
No Yes Yes No No Yes
Yes No No Yes No No
Yes No Yes Yes No No
Yes Yes No Yes No No
Yes Yes Yes Yes No Yes
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4.4 Teachability

Finally, we look at whether efficient parameter training procedures exist for various
classes. Given input/output trees of maximum size n, Graehl and Knight (2004) present
an expectation-maximization algorithm for xT transducers with ε rules, which covers
all of the top-down classes in this paper. This algorithm runs in O(n2) time, which is
the same asymptotic behavior as the forward–backward algorithm for FSTs (Baum
and Eagon 1967). Like forward–backward, it guarantees a set of parameter values that
locally optimize the probability of the training corpus.

5 Conclusion

Figure 3 summarizes the top-down transducer classes analyzed in this paper, plus some
of the bottom-up transducer classes (suffixed with B), together with their properties.

Fig. 3 Classes of tree transducers and their properties
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Immediately, we can see that no transducer class has all of the desirable proper-
ties we laid out. Classes of interest include LNT (which offers closure under com-
position), xLNT (which offers expressiveness and generalizes FST), and xT (which
offers copying, deleting, and teachability). Due to LNT not generalizing FST, it is
still the case that string software toolkits (Mohri et al. 2000) and tree software toolkits
(May and Knight 2006) offer overlapping capabilities.

Future problems include exploring more automata frameworks. For example, it
appears that bottom-up transducers are not expressive, even with copying and deleting
power. However, within the bottom-up family, Maletti (2007) has recently analyzed
non-deterministic multi-state transducers (MLB in Fig. 3), which can remember multi-
ple output tree fragments as they crawl up the input tree. These machines can carry out
the transformation of Fig. 2, and their non-copying version is closed under composition
(though, like LNT, they do not generate unbounded output and do not generalize FST).

Another future direction is to propose other desirable formal properties from a
machine translation perspective, and to see whether more powerful, non-finite-state
formalisms (e.g., Shieber and Schabes 1990) have those properties. Translation models
based on dependency grammars have also been proposed (e.g., Shen et al. 2008), and
these may also be formalized.

Finally, it would be useful to be able to test, for two tree transducers (both in some
class), whether the composition of their transformations can be captured by a third
transducer that lies within the same class. There may be no algorithm for this test—for
example, there can be no algorithm to tell whether the intersection of two context-free
languages (represented by two context-free grammars) is itself context-free. If there
were such a composability test, however, most pairs of NLP transducers would be
detected as composable, and when applied to string FSTs, tree-based composition
would work appropriately.
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